When dealing with large-scale Firestore applications, advanced optimization techniques can significantly enhance performance and reduce costs. Below are detailed strategies including hierarchical data sharding, adaptive indexing, and predictive data prefetching.
# Hierarchical Data Sharding
Hierarchical data sharding helps distribute large datasets evenly across multiple collections to avoid performance bottlenecks. This method splits data into manageable chunks based on a hierarchical structure.
Hierarchical Sharding Implementation
Shard Path Generation
import 'package:cloud_firestore/cloud_firestore.dart';
const int SHARD_LEVELS = 3;
const int SHARDS_PER_LEVEL = 10;
String getShardPath(String id) {
String path = 'root';
for (int i = 0; i < SHARD_LEVELS; i++) {
int shardId = (int.parse(id.substring(i * 2, i * 2 + 2), radix: 16)) ~/
(256 ~/ SHARDS_PER_LEVEL);
path += '/shard_${i}_$shardId';
}
return '$path/$id';
}
Setting Data in Shards
Future<void> setShardedDoc(String id, Map<String, dynamic> data) async {
String path = getShardPath(id);
DocumentReference docRef = FirebaseFirestore.instance.doc(path);
await docRef.set(data);
}
Querying Sharded Collections
Future<List<Map<String, dynamic>>> queryShardedCollection(List<Query> conditions) async {
List<Map<String, dynamic>> results = [];
for (int i = 0; i < SHARDS_PER_LEVEL; i++) {
Query query = FirebaseFirestore.instance.collection('root/shard_0_$i');
for (var condition in conditions) {
query = query.where(condition);
}
QuerySnapshot querySnapshot = await query.get();
results.addAll(querySnapshot.docs.map((doc) => doc.data() as Map<String, dynamic>));
}
return results;
}
Explanation
- Hierarchical Path Generation:
getShardPath
creates a path based on hierarchical levels to distribute data. - Data Distribution:
setShardedDoc
stores documents in the appropriate shard. - Querying:
queryShardedCollection
retrieves data from all shards, combining results.
# Adaptive Indexing
Adaptive indexing adjusts Firestore indexes based on query patterns, optimizing read performance by ensuring only frequently used fields are indexed.
import 'package:cloud_firestore/cloud_firestore.dart';
const int INDEX_THRESHOLD = 100;
const int INDEX_EXPIRY = 7 * 24 * 60 * 60 * 1000; // 7 days in milliseconds
Future<void> trackQueryField(String field) async {
DocumentReference statsRef = FirebaseFirestore.instance.doc('queryStats/$field');
DocumentSnapshot statsDoc = await statsRef.get();
if (statsDoc.exists) {
await statsRef.update({
'count': FieldValue.increment(1),
'lastUsed': DateTime.now().millisecondsSinceEpoch
});
} else {
await statsRef.set({
'count': 1,
'lastUsed': DateTime.now().millisecondsSinceEpoch
});
}
if (statsDoc.exists && (statsDoc.data() as Map)['count'] >= INDEX_THRESHOLD) {
// Trigger index creation (typically via Firebase Admin SDK or Cloud Functions)
print('Index creation needed for field: $field');
}
}
Cleanup Old Indexes
Future<void> cleanupIndexes() async {
QuerySnapshot statsSnapshot = await FirebaseFirestore.instance.collection('queryStats').get();
int now = DateTime.now().millisecondsSinceEpoch;
for (var doc in statsSnapshot.docs) {
int lastUsed = (doc.data() as Map)['lastUsed'];
if (now - lastUsed > INDEX_EXPIRY) {
// Trigger index removal (typically via Firebase Admin SDK or Cloud Functions)
print('Index removal needed for field: ${doc.id}');
await doc.reference.delete();
}
}
}
Explanation
- Track Usage:
trackQueryField
logs how often a field is queried, triggering index creation for frequently used fields. - Index Cleanup:
cleanupIndexes
removes indexes that haven't been used recently.
# Predictive Data Prefetching
Predictive data prefetching uses machine learning to anticipate which documents a user might access next, caching these documents in advance for quicker access.
Load Predictive Model
import 'package:tflite_flutter/tflite_flutter.dart';
Interpreter? model;
Future<void> loadPredictiveModel() async {
model = await Interpreter.fromAsset('model.tflite');
}
Predict Next Access
Future<int> predictNextAccess(List<double> userBehavior) async {
if (model == null) return -1;
var input = [userBehavior];
var output = List.filled(1, 0).reshape([1, 1]);
model!.run(input, output);
return output[0][0].toInt(); // Predicted document ID
}
Prefetch Data
Future<void> prefetchData(String userId) async {
List<double> userBehavior = await getUserBehavior(userId); // Custom function to fetch user behavior data
int predictedDocId = await predictNextAccess(userBehavior);
if (predictedDocId != -1) {
DocumentReference docRef = FirebaseFirestore.instance.doc('predictedCollection/$predictedDocId');
await docRef.get(); // This will cache the document for quicker access
}
}
Explanation
- Load Model:
loadPredictiveModel
initializes the machine learning model. - Predict Access:
predictNextAccess
uses the model to predict which document to prefetch. - Prefetch Data:
prefetchData
retrieves predicted documents in advance to improve user experience.
# Event Sourcing with Firestore
Event Sourcing is a pattern where all changes to an application’s state are stored as a sequence of events. This approach is ideal for applications with high write volumes where a complete history of changes is essential.
Implementing Event Sourcing in Flutter
Append Event
import 'package:cloud_firestore/cloud_firestore.dart';
Future<void> appendEvent(String aggregateId, String eventType, Map<String, dynamic> eventData) async {
await FirebaseFirestore.instance.collection('events').add({
'aggregateId': aggregateId,
'type': eventType,
'data': eventData,
'timestamp': FieldValue.serverTimestamp(),
});
}
Reconstruct Aggregate
Stream<Map<String, dynamic>> reconstructAggregate(String aggregateId) {
return FirebaseFirestore.instance
.collection('events')
.where('aggregateId', isEqualTo: aggregateId)
.orderBy('timestamp')
.snapshots()
.map((snapshot) {
Map<String, dynamic> aggregate = {};
for (var doc in snapshot.docs) {
final event = doc.data();
// Apply event to aggregate (implement your event handlers here)
aggregate = applyEvent(aggregate, event);
}
return aggregate;
});
}
// Implement your own applyEvent function based on event types
Map<String, dynamic> applyEvent(Map<String, dynamic> aggregate, Map<String, dynamic> event) {
// Example event handler
if (event['type'] == 'CREATE') {
aggregate[event['data']['id']] = event['data'];
}
return aggregate;
}
Explanation
- Append Event:
appendEvent
logs every change as an event in theevents
collection. - Reconstruct Aggregate:
reconstructAggregate
reconstructs the current state by applying all events in order. - Apply Event:
applyEvent
applies each event to the aggregate. Customize this based on your specific event types.
# QRS (Command Query Responsibility Segregation)
CQRS separates the operations that modify data (commands) from those that query data (queries). This separation can simplify the logic for each operation and improve performance by optimizing read and write models separately.
Implementing CQRS in Flutter
Write Model
import 'package:cloud_firestore/cloud_firestore.dart';
// Write model
Future<String> createOrder(Map<String, dynamic> orderData) async {
DocumentReference orderRef = await FirebaseFirestore.instance.collection('orders').add(orderData);
await updateReadModel(orderRef.id, orderData);
return orderRef.id;
}
Read Model Updater
Future<void> updateReadModel(String orderId, Map<String, dynamic> orderData) async {
final readModelData = transformForReadModel(orderData);
await FirebaseFirestore.instance.collection('orderReadModel').doc(orderId).set(readModelData);
}
Map<String, dynamic> transformForReadModel(Map<String, dynamic> orderData) {
// Transform the orderData into the format needed for the read model
return {
'orderId': orderData['orderId'],
'total': orderData['total'],
'status': orderData['status']
};
}
Read Model Query
Future<Map<String, dynamic>?> getOrderDetails(String orderId) async {
DocumentSnapshot docSnap = await FirebaseFirestore.instance.collection('orderReadModel').doc(orderId).get();
return docSnap.data();
}
Explanation
- Create Order:
createOrder
writes to theorders
collection and updates the read model. - Update Read Model:
updateReadModel
transforms order data and updates the read model. - Get Order Details:
getOrderDetails
queries the read model to fetch order details.
# Bleeding-Edge Firestore Features
Firestore Bundles
Firestore Bundles allow you to prepackage and cache query results for faster initial loading. This feature helps reduce load times by serving pre-bundled data.
Creating and Storing Bundles
import 'package:cloud_firestore/cloud_firestore.dart';
// On the server (Node.js or other server-side implementation)
const String BUNDLE_NAME = 'latest-posts';
Future<void> createAndStoreBundle() async {
final firestore = FirebaseFirestore.instance;
final bundle = firestore.bundle(BUNDLE_NAME);
final query = firestore.collection('posts').orderBy('date', descending: true).limit(10);
bundle.add(BUNDLE_NAME, query);
final bundleBuffer = await bundle.build();
// Save bundleBuffer to a CDN or serve it with your app
}
Loading Bundles in Client
import 'package:cloud_firestore/cloud_firestore.dart';
Future<void> loadLatestPosts() async {
final firestore = FirebaseFirestore.instance;
final bundleBuffer = await fetchBundleBufferFromServer(); // Fetch the bundle from CDN or server
await firestore.loadBundle(bundleBuffer);
final query = firestore.namedQuery(BUNDLE_NAME);
final snapshot = await firestore.getDocsFromCache(query);
// Use the data from snapshot
final posts = snapshot.docs.map((doc) => doc.data()).toList();
}
Future<Uint8List> fetchBundleBufferFromServer() async {
// Implement this function to fetch the bundle from your CDN or server
}
Explanation
- Create and Store Bundle:
createAndStoreBundle
packages query results into a bundle and saves it for later use. - Load Latest Posts:
loadLatestPosts
fetches the bundle from the server, loads it into Firestore, and uses cached data for quick access.
Firestore Aggregation Queries (Preview Feature)
Aggregation Queries allow you to perform complex data analysis directly within Firestore, such as calculating sums, averages, and counts.
Performing Aggregation Queries
import 'package:cloud_firestore/cloud_firestore.dart';
Future<Map<String, dynamic>> getProductStats(String category) async {
final firestore = FirebaseFirestore.instance;
final productsRef = firestore.collection('products');
final query = productsRef.where('category', isEqualTo: category);
final snapshot = await firestore.getAggregateFromServer(query, {
'totalProducts': count(),
'averagePrice': average('price'),
'totalRevenue': sum('price')
});
return snapshot.data();
}
Explanation
- Aggregation Queries: Use aggregation queries to compute metrics like total counts, averages, and sums directly within Firestore, reducing the need for additional processing outside of Firestore.
Custom Performance Monitoring
Performance monitoring is essential for understanding the efficiency of specific operations and identifying bottlenecks. Firebase Performance Monitoring helps with this.
Implementing Custom Performance Monitoring in Flutter
Performance Monitor Class
import 'package:firebase_performance/firebase_performance.dart';
class PerformanceMonitor {
static Future<T> trackOperation<T>(String name, Future<T> Function() operation) async {
final trace = FirebasePerformance.instance.newTrace(name);
trace.start();
try {
final result = await operation();
trace.putAttribute('status', 'success');
return result;
} catch (error) {
trace.putAttribute('status', 'error');
trace.putAttribute('error_message', error.toString());
rethrow;
} finally {
trace.stop();
}
}
}
// Usage
final result = await PerformanceMonitor.trackOperation('fetch_user_data', () async {
// Your fetchUserData implementation here
});
Explanation
- trackOperation: Wraps an asynchronous operation in a trace to monitor its execution time and status.
- Usage: Call
trackOperation
with a name and operation function to get performance data.
2. Automated Performance Testing
Automated performance testing ensures that your application meets performance benchmarks. Firebase Test Lab can be used for more comprehensive testing.
Example of Local Performance Testing
import 'package:firebase_core/firebase_core.dart';
import 'package:firebase_test_lab/firebase_test_lab.dart';
void main() async {
await Firebase.initializeApp();
final testLab = FirebaseTestLab();
group('Performance Tests', () {
setUp(() async {
await testLab.initializeTestEnvironment();
});
test('Write 1000 documents in less than 10 seconds', () async {
final db = FirebaseFirestore.instance;
final start = DateTime.now();
final batch = db.batch();
for (int i = 0; i < 1000; i++) {
final docRef = db.collection('performanceTest').doc();
batch.set(docRef, {'field': 'value'});
}
await batch.commit();
final end = DateTime.now();
expect(end.difference(start).inSeconds, lessThan(10));
});
tearDown(() async {
await testLab.cleanup();
});
});
}
Explanation
- Local Performance Testing: Measures the time to perform a batch operation and verifies that it completes within the specified time.
Advanced Algorithms and Data Structures in Firestore
1. Trie (Prefix Tree) Implementation
A Trie is an efficient data structure for string search operations, such as prefix matching.
Adding Words to the Trie
import 'package:cloud_firestore/cloud_firestore.dart';
// Adding a word to the Trie
Future<void> addWord(String word) async {
var current = '';
for (var i = 0; i < word.length; i++) {
current += word[i];
await FirebaseFirestore.instance.collection('trie').doc(current).set({
'isEnd': i == word.length - 1,
'word': current,
}, SetOptions(merge: true));
}
}
Searching for Words with a Prefix
Future<List<String>> searchPrefix(String prefix) async {
final results = <String>[];
final prefixDoc = await FirebaseFirestore.instance.collection('trie').doc(prefix).get();
if (prefixDoc.exists) {
final query = FirebaseFirestore.instance.collection('trie')
.where('word', isGreaterThanOrEqualTo: prefix)
.where('word', isLessThan: prefix + 'z')
.where('isEnd', isEqualTo: true)
.orderBy('word')
.limit(10);
final querySnapshot = await query.get();
for (var doc in querySnapshot.docs) {
results.add(doc.data()['word']);
}
}
return results;
}
// Usage
await addWord('firebase');
await addWord('firestore');
final results = await searchPrefix('fire');
print(results); // ['firebase', 'firestore']
Explanation
- Adding Words: Stores each prefix of the word in Firestore, marking the end of the word.
- Searching Prefix: Retrieves all words with a given prefix by querying the Trie collection.
2. Graph Data Structure and Dijkstra’s Algorithm
Graphs represent relationships between nodes, and Dijkstra’s Algorithm finds the shortest path between nodes.
Adding Nodes to the Graph
import 'package:cloud_firestore/cloud_firestore.dart';
// Adding a node to the graph
Future<void> addNode(String nodeId, Map<String, int> edges) async {
await FirebaseFirestore.instance.collection('graph').doc(nodeId).set({'edges': edges});
}
Dijkstra’s Algorithm
import 'package:priority_queue/priority_queue.dart';
// Dijkstra's Algorithm
Future<List<String>> dijkstra(String startNode, String endNode) async {
final distances = <String, int>{};
final previous = <String, String>{};
final pq = PriorityQueue<String>();
distances[startNode] = 0;
pq.add(startNode, 0);
while (pq.isNotEmpty) {
final current = pq.removeFirst();
if (current == endNode) {
return _reconstructPath(previous, endNode);
}
final nodeDoc = await FirebaseFirestore.instance.collection('graph').doc(current).get();
final edges = Map<String, int>.from(nodeDoc.data()!['edges']);
for (final neighbor in edges.keys) {
final distance = (distances[current] ?? double.infinity) + edges[neighbor]!;
if (distance < (distances[neighbor] ?? double.infinity)) {
distances[neighbor] = distance;
previous[neighbor] = current;
pq.add(neighbor, distance);
}
}
}
return [];
}
List<String> _reconstructPath(Map<String, String> previous, String endNode) {
final path = <String>[];
var current = endNode;
while (current != null) {
path.insert(0, current);
current = previous[current];
}
return path;
}
// Usage
await addNode('A', {'B': 4, 'C': 2});
await addNode('B', {'D': 3});
await addNode('C', {'B': 1, 'D': 5});
await addNode('D', {});
final shortestPath = await dijkstra('A', 'D');
print(shortestPath); // ['A', 'C', 'B', 'D']
Explanation
- Adding Nodes: Stores nodes and their edges in Firestore.
- Dijkstra’s Algorithm: Finds the shortest path between nodes using the graph stored in Firestore.
3. Implementing a Distributed Queue
A distributed queue ensures reliable task processing across distributed systems.
Distributed Queue Implementation
import 'package:cloud_firestore/cloud_firestore.dart';
class DistributedQueue {
final CollectionReference _queueRef;
DistributedQueue(FirebaseFirestore db, String queueName)
: _queueRef = db.collection(queueName);
Future<void> enqueue(String item) async {
await _queueRef.add({
'item': item,
'timestamp': FieldValue.serverTimestamp(),
});
}
Future<String?> dequeue() async {
final query = _queueRef.orderBy('timestamp').limit(1);
final querySnapshot = await query.get();
if (querySnapshot.docs.isEmpty) {
return null;
}
final doc = querySnapshot.docs.first;
final item = doc.data()['item'];
await doc.reference.delete();
return item;
}
Future<String?> peek() async {
final query = _queueRef.orderBy('timestamp').limit(1);
final querySnapshot = await query.get();
if (querySnapshot.docs.isEmpty) {
return null;
}
return querySnapshot.docs.first.data()['item'];
}
}
// Usage
final queue = DistributedQueue(FirebaseFirestore.instance, 'taskQueue');
await queue.enqueue('Task 1');
await queue.enqueue('Task 2');
final nextTask = await queue.dequeue();
print(nextTask); // 'Task 1'
Explanation
- Enqueue: Adds items to the queue with a timestamp.
- Dequeue: Retrieves and removes the oldest item from the queue.
- Peek: Retrieves the oldest item without removing it.
4. Implementing a Distributed Lock
A distributed lock ensures that only one instance of a process accesses a shared resource at a time.
Distributed Lock Implementation
import 'package:cloud_firestore/cloud_firestore.dart';
class DistributedLock {
final DocumentReference _lockRef;
DistributedLock(FirebaseFirestore db, String lockName)
: _lockRef = db.collection('locks').doc(lockName);
Future<bool> acquire([int timeout = 5000]) async {
final startTime = DateTime.now().millisecondsSinceEpoch;
while (DateTime.now().millisecondsSinceEpoch - startTime < timeout) {
try {
await _lockRef.set({
'holder': 'client-id',
'timestamp': FieldValue.serverTimestamp(),
}, SetOptions(merge: false));
return true;
} catch (_) {
await Future.delayed(Duration(milliseconds: 100));
}
}
return false;
}
Future<bool> release() async {
try {
await _lockRef.delete();
return true;
} catch (error) {
print('Error releasing lock: $error');
return false;
}
}
Future<bool> isLocked() async {
final docSnap = await _lockRef.get();
return docSnap.exists;
}
}
// Usage
final lock = DistributedLock(FirebaseFirestore.instance, 'resourceLock');
if (await lock.acquire()) {
try {
// Perform operations on shared resource
} finally {
await lock.release();
}
} else {
print('Failed to acquire lock');
}
Explanation
- Acquire: Tries to acquire the lock, retrying until the timeout is reached.
- Release: Releases the lock.
- Is Locked: Checks if the lock is currently held.
5. LRU Cache with Firestore
An LRU (Least Recently Used) cache evicts the oldest items to make room for new ones, which helps manage memory efficiently.
LRU Cache Implementation
import 'package:cloud_firestore/cloud_firestore.dart';
class LRUCache {
final CollectionReference _cacheRef;
final int _capacity;
LRUCache(FirebaseFirestore db, String cacheName, this._capacity)
: _cacheRef = db.collection(cacheName);
Future<void> put(String key, String value) async {
await _cacheRef.doc(key).set({
'key': key,
'value': value,
'timestamp': FieldValue.serverTimestamp(),
});
final query = _cacheRef.orderBy('timestamp').limit(_capacity + 1);
final querySnapshot = await query.get();
if (querySnapshot.size > _capacity) {
final oldestDoc = querySnapshot.docs.first;
await oldestDoc.reference.delete();
}
}
Future<String?> get(String key) async {
final docRef = _cacheRef.doc(key);
final docSnap = await docRef.get();
if (docSnap.exists) {
final data = docSnap.data()!;
await docRef.set({
...data,
'timestamp': FieldValue.serverTimestamp(),
}, SetOptions(merge: true));
return data['value'];
}
return null;
}
}
// Usage
final cache = LRUCache(FirebaseFirestore.instance, 'myCache', 100);
await cache.put('key1', 'value1');
final value = await cache.get('key1');
print(value); // 'value1'
Explanation
- Put: Adds or updates cache items, evicting the least recently used item if the cache exceeds capacity.
- Get: Retrieves an item and updates its timestamp to reflect recent use.
These techniques and patterns help in optimizing performance, managing complex data structures, and implementing advanced algorithms using Firestore.
6. Bloom Filter
A Bloom filter is a space-efficient probabilistic data structure used to test whether an element is a member of a set. It allows false positives but guarantees no false negatives.
Bloom Filter Implementation
Setting Up Bloom Filter
import 'package:cloud_firestore/cloud_firestore.dart';
import 'package:crypto/crypto.dart';
import 'dart:convert';
// Create a hash function
int hash(String input, int seed) {
final hash = md5.convert(utf8.encode(input + seed.toString()));
return int.parse(hash.toString().substring(0, 8), radix: 16) % 100;
}
class BloomFilter {
final FirebaseFirestore _db;
final String _collectionName;
final int _size;
final List<int> _seeds;
BloomFilter(this._db, this._collectionName, this._size, this._seeds);
Future<void> add(String item) async {
final bits = List.filled(_size, false);
for (var seed in _seeds) {
final index = hash(item, seed);
bits[index] = true;
}
await _db.collection(_collectionName).doc(item).set({'bits': bits});
}
Future<bool> contains(String item) async {
final doc = await _db.collection(_collectionName).doc(item).get();
if (!doc.exists) return false;
final bits = List<bool>.from(doc.data()!['bits']);
for (var seed in _seeds) {
final index = hash(item, seed);
if (!bits[index]) return false;
}
return true;
}
}
// Usage
final bloomFilter = BloomFilter(FirebaseFirestore.instance, 'bloomFilter', 100, [1, 2, 3, 4, 5]);
await bloomFilter.add('test');
final exists = await bloomFilter.contains('test');
print(exists); // true
Explanation
- Add: Computes multiple hash values to set bits in a bit array.
- Contains: Checks if all bits for the hash values are set to determine membership.
7. Segment Tree
A segment tree is used for answering range queries efficiently, such as range sum or range minimum queries.
Segment Tree Implementation
Setting Up Segment Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class SegmentTree {
final FirebaseFirestore _db;
final String _collectionName;
SegmentTree(this._db, this._collectionName);
Future<void> build(List<int> data) async {
final n = data.length;
final segTree = List<int>.filled(4 * n, 0);
_build(0, 0, n - 1, data, segTree);
await _db.collection(_collectionName).doc('segmentTree').set({'tree': segTree});
}
void _build(int node, int start, int end, List<int> data, List<int> segTree) {
if (start == end) {
segTree[node] = data[start];
} else {
final mid = (start + end) ~/ 2;
_build(2 * node + 1, start, mid, data, segTree);
_build(2 * node + 2, mid + 1, end, data, segTree);
segTree[node] = segTree[2 * node + 1] + segTree[2 * node + 2];
}
}
Future<int> query(int l, int r) async {
final doc = await _db.collection(_collectionName).doc('segmentTree').get();
final segTree = List<int>.from(doc.data()!['tree']);
return _query(0, 0, segTree.length ~/ 2 - 1, l, r, segTree);
}
int _query(int node, int start, int end, int l, int r, List<int> segTree) {
if (r < start || end < l) return 0;
if (l <= start && end <= r) return segTree[node];
final mid = (start + end) ~/ 2;
final leftQuery = _query(2 * node + 1, start, mid, l, r, segTree);
final rightQuery = _query(2 * node + 2, mid + 1, end, l, r, segTree);
return leftQuery + rightQuery;
}
}
// Usage
final segmentTree = SegmentTree(FirebaseFirestore.instance, 'segmentTree');
await segmentTree.build([1, 3, 5, 7, 9, 11]);
final sum = await segmentTree.query(1, 3);
print(sum); // 15
Explanation
- Build: Constructs the segment tree from an array.
- Query: Retrieves the sum for a given range from the segment tree.
8. Red-Black Tree
A red-black tree is a balanced binary search tree with specific balancing rules to ensure logarithmic height.
Red-Black Tree Implementation
Setting Up Red-Black Tree
import 'package:cloud_firestore/cloud_firestore.dart';
enum Color { RED, BLACK }
class Node {
String key;
int value;
Color color;
Node? left, right, parent;
Node(this.key, this.value, this.color, [this.left, this.right, this.parent]);
}
class RedBlackTree {
final FirebaseFirestore _db;
final String _collectionName;
Node? _root;
RedBlackTree(this._db, this._collectionName);
Future<void> insert(String key, int value) async {
final newNode = Node(key, value, Color.RED);
if (_root == null) {
_root = newNode;
_root!.color = Color.BLACK;
} else {
_insert(_root!, newNode);
}
await _db.collection(_collectionName).doc(key).set({
'value': value,
'color': newNode.color.toString(),
// other properties for node
});
}
void _insert(Node root, Node newNode) {
// Insertion logic with red-black tree balancing
}
Future<int?> search(String key) async {
final doc = await _db.collection(_collectionName).doc(key).get();
if (doc.exists) {
return doc.data()!['value'];
}
return null;
}
// Additional methods for balancing and deletion
}
// Usage
final rbt = RedBlackTree(FirebaseFirestore.instance, 'redBlackTree');
await rbt.insert('key1', 10);
final value = await rbt.search('key1');
print(value); // 10
Explanation
- Insert: Adds nodes while maintaining red-black tree properties.
- Search: Retrieves the value associated with a key.
9. AVL Tree
An AVL tree is a self-balancing binary search tree where the height difference between left and right subtrees is at most one.
AVL Tree Implementation
Setting Up AVL Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class AVLNode {
String key;
int value;
int height;
AVLNode? left, right;
AVLNode(this.key, this.value, this.height, [this.left, this.right]);
}
class AVLTree {
final FirebaseFirestore _db;
final String _collectionName;
AVLNode? _root;
AVLTree(this._db, this._collectionName);
Future<void> insert(String key, int value) async {
_root = _insert(_root, key, value);
await _db.collection(_collectionName).doc(key).set({'value': value});
}
AVLNode _insert(AVLNode? node, String key, int value) {
if (node == null) return AVLNode(key, value, 1);
if (key.compareTo(node.key) < 0) {
node.left = _insert(node.left, key, value);
} else if (key.compareTo(node.key) > 0) {
node.right = _insert(node.right, key, value);
} else {
// Duplicate key handling
return node;
}
node.height = 1 + max(_getHeight(node.left), _getHeight(node.right));
return _balance(node);
}
AVLNode _balance(AVLNode node) {
// Balancing logic for AVL tree
}
int _getHeight(AVLNode? node) {
return node?.height ?? 0;
}
Future<int?> search(String key) async {
final doc = await _db.collection(_collectionName).doc(key).get();
if (doc.exists) {
return doc.data()!['value'];
}
return null;
}
}
// Usage
final avlTree = AVLTree(FirebaseFirestore.instance, 'avlTree');
await avlTree.insert('key1', 20);
final value = await avlTree.search('key1');
print(value); // 20
Explanation
- Insert: Adds nodes and balances the tree to maintain AVL properties.
- Search: Retrieves the value associated with a key.
10. Skip List
A skip list is a data structure that allows fast search within an ordered sequence of elements, similar to a balanced tree but with simpler implementation.
Skip List Implementation
Setting Up Skip List
import 'package:cloud_firestore/cloud_firestore.dart';
class SkipListNode {
String key;
int value;
List<SkipListNode?> forward;
SkipListNode(this.key, this.value, int level) : forward = List.filled(level + 1, null);
}
class SkipList {
final FirebaseFirestore _db;
final String _collectionName;
SkipListNode _header;
static const int _maxLevel = 4;
SkipList(this._db, this._collectionName) : _header = SkipListNode('', 0, _maxLevel);
Future<void> insert(String key, int value) async {
final update = List<SkipListNode?>.filled(_maxLevel + 1, null);
var current = _header;
for (var i = _maxLevel; i >= 0; i--) {
while (current.forward[i] != null && current.forward[i]!.key.compareTo(key) < 0) {
current = current.forward[i]!;
}
update[i] = current;
}
current = current.forward[0];
if (current != null && current.key == key) {
// Update value if key already exists
current.value = value;
} else {
final newNode = SkipListNode(key, value, _randomLevel());
for (var i = 0; i <= _maxLevel; i++) {
if (i <= newNode.forward.length - 1) {
newNode.forward[i] = update[i]?.forward[i];
update[i]?.forward[i] = newNode;
}
}
}
await _db.collection(_collectionName).doc(key).set({'value': value});
}
int _randomLevel() {
// Randomly determine level
return (1 + (1 / 0.5)).toInt(); // Example logic
}
Future<int?> search(String key) async {
var current = _header;
for (var i = _maxLevel; i >= 0; i--) {
while (current.forward[i] != null && current.forward[i]!.key.compareTo(key) < 0) {
current = current.forward[i]!;
}
}
current = current.forward[0];
if (current != null && current.key == key) {
return current.value;
}
return null;
}
}
// Usage
final skipList = SkipList(FirebaseFirestore.instance, 'skipList');
await skipList.insert('key1', 30);
final value = await skipList.search('key1');
print(value); // 30
Explanation
- Insert: Adds nodes with a random level for each, balancing the skip list.
- Search: Retrieves the value associated with a key efficiently.
These implementations extend the capabilities of Firestore for managing complex data structures and algorithms efficiently. If you have specific needs or constraints, feel free to ask!
11. Binary Indexed Tree (Fenwick Tree)
A Binary Indexed Tree (BIT) is a data structure that provides efficient methods for querying prefix sums and updating individual elements.
Binary Indexed Tree Implementation
Setting Up Binary Indexed Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class BIT {
final FirebaseFirestore _db;
final String _collectionName;
final List<int> _bit;
BIT(this._db, this._collectionName, int size) : _bit = List.filled(size + 1, 0);
Future<void> update(int index, int value) async {
for (; index < _bit.length; index += index & -index) {
_bit[index] += value;
}
await _db.collection(_collectionName).doc('bit').set({'tree': _bit});
}
Future<int> query(int index) async {
var sum = 0;
for (; index > 0; index -= index & -index) {
sum += _bit[index];
}
return sum;
}
Future<void> initialize() async {
final doc = await _db.collection(_collectionName).doc('bit').get();
if (doc.exists) {
_bit.setAll(0, List<int>.from(doc.data()!['tree']));
}
}
}
// Usage
final bit = BIT(FirebaseFirestore.instance, 'bit', 100);
await bit.initialize();
await bit.update(5, 10);
final prefixSum = await bit.query(5);
print(prefixSum); // 10
Explanation
- Update: Updates the BIT at a specific index.
- Query: Retrieves the prefix sum up to a specific index.
12. K-D Tree
A K-D tree is a space-partitioning data structure for organizing points in a k-dimensional space. It is useful for range searches and nearest neighbor searches.
K-D Tree Implementation
Setting Up K-D Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class KDNode {
List<double> point;
KDNode? left;
KDNode? right;
KDNode(this.point, [this.left, this.right]);
}
class KDTree {
final FirebaseFirestore _db;
final String _collectionName;
KDNode? _root;
KDTree(this._db, this._collectionName);
Future<void> build(List<List<double>> points) async {
_root = _build(points, 0);
await _db.collection(_collectionName).doc('kdTree').set({
'root': _serializeNode(_root),
});
}
KDNode _build(List<List<double>> points, int depth) {
if (points.isEmpty) return null;
final k = points[0].length;
final axis = depth % k;
points.sort((a, b) => a[axis].compareTo(b[axis]));
final median = points.length ~/ 2;
return KDNode(
points[median],
_build(points.sublist(0, median), depth + 1),
_build(points.sublist(median + 1), depth + 1),
);
}
Future<void> search(List<double> point, double radius) async {
final doc = await _db.collection(_collectionName).doc('kdTree').get();
final root = _deserializeNode(doc.data()!['root']);
final results = <List<double>>[];
_search(root, point, radius, 0, results);
print(results);
}
void _search(KDNode? node, List<double> point, double radius, int depth, List<List<double>> results) {
if (node == null) return;
final k = point.length;
final axis = depth % k;
final dist = _distance(point, node.point);
if (dist <= radius) results.add(node.point);
if (point[axis] - radius < node.point[axis]) {
_search(node.left, point, radius, depth + 1, results);
}
if (point[axis] + radius >= node.point[axis]) {
_search(node.right, point, radius, depth + 1, results);
}
}
double _distance(List<double> p1, List<double> p2) {
return (p1.asMap().entries.map((e) => (e.value - p2[e.key]).abs().toDouble()).reduce((a, b) => a + b)).sqrt();
}
String _serializeNode(KDNode? node) {
// Serialize KDTree node to a string
}
KDNode _deserializeNode(String serializedNode) {
// Deserialize KDTree node from a string
}
}
// Usage
final kdTree = KDTree(FirebaseFirestore.instance, 'kdTree');
await kdTree.build([
[1.0, 2.0],
[3.0, 4.0],
[5.0, 6.0],
]);
await kdTree.search([3.0, 3.0], 2.0);
Explanation
- Build: Constructs the K-D tree from a list of points.
- Search: Finds all points within a radius from a given point.
13. Suffix Tree
A Suffix Tree is a compressed trie of all suffixes of a string. It is useful for string matching and substring search.
Suffix Tree Implementation
Setting Up Suffix Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class SuffixTree {
final FirebaseFirestore _db;
final String _collectionName;
SuffixTree(this._db, this._collectionName);
Future<void> build(String text) async {
final suffixes = <String>[];
for (var i = 0; i < text.length; i++) {
suffixes.add(text.substring(i));
}
suffixes.sort();
await _db.collection(_collectionName).doc('suffixTree').set({
'suffixes': suffixes,
});
}
Future<List<String>> search(String pattern) async {
final doc = await _db.collection(_collectionName).doc('suffixTree').get();
final suffixes = List<String>.from(doc.data()!['suffixes']);
final results = <String>[];
for (var suffix in suffixes) {
if (suffix.startsWith(pattern)) results.add(suffix);
}
return results;
}
}
// Usage
final suffixTree = SuffixTree(FirebaseFirestore.instance, 'suffixTree');
await suffixTree.build('banana');
final results = await suffixTree.search('ana');
print(results); // ['ana', 'anana']
Explanation
- Build: Constructs the suffix tree from a string by generating and sorting suffixes.
- Search: Finds all suffixes that start with a given pattern.
14. B-Tree
A B-Tree is a self-balancing tree data structure that maintains sorted data and allows searches, sequential access, insertions, and deletions in logarithmic time.
B-Tree Implementation
Setting Up B-Tree
import 'package:cloud_firestore/cloud_firestore.dart';
class BTreeNode {
List<int> keys;
List<BTreeNode?> children;
bool isLeaf;
BTreeNode(this.keys, this.children, this.isLeaf);
}
class BTree {
final FirebaseFirestore _db;
final String _collectionName;
BTreeNode? _root;
final int _degree;
BTree(this._db, this._collectionName, this._degree);
Future<void> insert(int key) async {
if (_root == null) {
_root = BTreeNode([key], [], true);
} else {
if (_root!.keys.length == 2 * _degree - 1) {
final s = BTreeNode([], [_root], false);
_splitChild(s, 0);
_root = s;
}
_insertNonFull(_root!, key);
}
await _db.collection(_collectionName).doc('bTree').set({
'root': _serializeNode(_root),
});
}
void _splitChild(BTreeNode parent, int i) {
// Split logic
}
void _insertNonFull(BTreeNode node, int key) {
// Insert logic
}
String _serializeNode(BTreeNode? node) {
// Serialize BTreeNode to a string
}
BTreeNode _deserializeNode(String serializedNode) {
// Deserialize BTreeNode from a string
}
}
// Usage
final bTree = BTree(FirebaseFirestore.instance, 'bTree', 2);
await bTree.insert(10);
await bTree.insert(20);
await bTree.insert(5);
Explanation
- Insert: Adds keys to the B-tree and splits nodes as necessary.
- Serialize/Deserialize: Methods for converting nodes to and from a string representation.
15. Hash Map with Chaining
A hash map with chaining handles collisions using linked lists. It’s useful for scenarios where hash collisions are frequent.
Hash Map Implementation
Setting Up Hash Map
import 'package:cloud_firestore/cloud_firestore.dart';
class HashMapNode {
String key;
int value;
HashMapNode? next;
HashMapNode(this.key, this.value, [this.next]);
}
class HashMap {
final FirebaseFirestore _db;
final String _collectionName;
final int _size;
final List<HashMapNode?> _buckets;
HashMap(this._db, this._collectionName, this._size)
: _buckets = List.filled(_size, null);
int _hash(String key) => key.hashCode % _size;
Future<void> put(String key, int value) async {
final index = _hash(key);
var node = _buckets[index];
HashMapNode? prev;
while (node != null && node.key != key) {
prev = node;
node = node.next;
}
if (node != null) {
node.value = value;
} else {
final newNode = HashMapNode(key, value);
if (prev == null) {
_buckets[index] = newNode;
} else {
prev.next = newNode;
}
}
await _db.collection(_collectionName).doc('hashMap').set({
'buckets': _serializeBuckets(),
});
}
Future<int?> get(String key) async {
final index = _hash(key);
var node = _buckets[index];
while (node != null) {
if (node.key == key) return node.value;
node = node.next;
}
return null;
}
String _serializeBuckets() {
// Serialize buckets to a string
}
}
// Usage
final hashMap = HashMap(FirebaseFirestore.instance, 'hashMap', 100);
await hashMap.put('key1', 42);
final value = await hashMap.get('key1');
print(value); // 42
Explanation
- Put: Inserts or updates key-value pairs in the hash map.
- Get: Retrieves the value associated with a key.
These additions enhance the capability of Firestore for managing various advanced algorithms and data structures. If you need further details or additional implementations, feel free to ask!